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Abstract. The development of G6rtler vortices in wall jet flow over curved surfaces is considered in both the linear 
and nonlinear growth r~gimes. It is shown, using asymptotic methods based on the largeness of the wavenumber of 
the vortices, that this hydrodynamic instability is prone to occur more readily on concave rather than convex 
surfaces. It is found that after passing the position of neutral stability, the flow develops a surprising structure quite 
unlike that produced in the Blasius boundary-layer. Once the flow is into the unstable regime, the effect of 
increasing the G6rtler number is to move the vortices away from the wall. 

§1. Introduction 

We shall consider some stability characteristics of G6rtler vortices in wall-jet flow over a 
curved surface. Most previous investigations have been limited to the study of this centrifu- 
gal instability in a Blasius boundary layer, where the monotonicity of the velocity profile 
requires that the surface be concave in order for the instability to become manifest. With the 
wall-jet velocity profile, however, flow over plates of either curvature can produce vortices. 
Glauert [1] gave the solution to the boundary-layer equations for the wall jet, which is found 
when, for example, a jet of air impinges on a surface. Carpenter et al. [2] demonstrated 
experimentally how G6rtler vortices may be found over Coanda surfaces. Such surfaces have 
industrial applications in waste-gas flares. 

G6rtler [3] considered the stability of incompressible boundary layers over a slightly 
curved surface, and showed how a secondary flow consisting of vortices aligned with the 
principal direction of motion can be supported. His equations were solved approximately 
and produced the result that boundary layers on concave curved walls are unstable at 
sufficiently high flow speeds. The stability of the flow depends on the G6rtler parameter, G, 
which is related to the Reynolds number of the flow and the local concave or convex 
curvature of the wall. 

Hfimmerlin [4] solved G6rtler's equations exactly and found the physically unacceptable 
result that the critical G6rtler number, Go, below which no instability could be found, 
corresponded to vortices of infinite wavelength. By retaining some higher order curvature 
terms, he re-derived the equations [5], the solution of which yielded a critical G6rtler 
number at non-zero wavenumber. 

Numerous authors have considered modifications to Hhmmerlin's equations. Herbert [6] 
and Floryan and Saric [7] gave reviews of previous work, and the latter authors presented 
results concerning the effect of suction on the vortex mechanism. Floryan [8] has discussed 
the stability of the wall jet to G6rtler vortices, mentioning the result that this velocity field 
admits the instability on convex walls. 

However, all the above authors used parallel-flow approximations, and their results 
disagree for vortices with small wavenumbers. Here, by 'parallel-flow', we mean that some 
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of the terms in the governing equations have been neglected or replaced by simplified terms 
in a manner which does not reflect the structure of the G6rtler problem correctly. For 
example, Floryan [8] assumes that all disturbance quantities vary as exp(/3x) where x is the 
downstream co-ordinate, and/3 is the downstream spatial growth rate. Hall [9] showed that 
the parallel-flow theories had no mathematical justification except for high wavenumbers. He 
developed a formal asymptotic expansion of the appropriate linear stability equations based 
on the smallness of the wavelength of the imposed disturbance, and showed that the position 
for neutral stability in this high wavenumber r6gime depends on the form and location of the 
initial disturbance from the mean flow. It was shown that the vortices form in a region of 
thickness O(el/2), where 2~re is the (small) wavelength of the vortices under consideration, 
centred on the point where gffy is a local maximum, that is, the point at which Rayleigh's [10] 
stability criterion is most violated. 

Stuart [11] and Watson [12] showed how non-linear effects could be taken into account 
close to the conditions of neutral stability under linear theory for plane poiseuille flow and 
for Couette flow. However, their approach required the correction to the mean flow to be an 
order of magnitude smaller than the mean flow itself. Hall [13] has shown that this is not the 
case for the G6rtler problem. He considered the weakly non-linear development of a locally 
neutrally stable vortex. He showed how in an e-neighbourhood of the point of neutral 
stability according to linear theory, X, say, the downstream velocity component due to the 
vortex is of the same magnitude as that of the mean flow. At an asymptotically large distance 
downstream of X,,  it was shown how the 'correction' to the mean flow becomes an order of 
magnitude larger than the mean flow itself, for the Blasius boundary layer. At this stage, the 
vortex flow extends beyond the boundary layer into the free stream. 

The full, linear, partial-differential equations were solved numerically by Hall [14] for 
vortices of O(1) wavenumber. An initial disturbance was imposed on the flow at some 
location and its downstream development was examined. The growth rate of the disturbance, 
based on a non-dimensional energy function associated with the flow, was found to depend 
on the form of the initial disturbance and the place at which it had been introduced to the 
flow. Hall concluded that no unique neutral curve for the G6rtler instability exists. He did, 
however, show that the different neutral curves merged to form one curve in the high 
wavenumber regime and that this was the curve which parallel-flow theorists had produced. 
This confirms the idea that such theories are only valid in this regime, and are of little use 
elsewhere in connection with the G6rtler problem. 

Hall and Lakin [15] gave an account of the fully non-linear problem, using Hall [13] as a 
starting point. They showed how the region of vortex activity increases to an O(1) depth. 
The way in which the vortex disturbance in the core decays away in two bounding shear 
layers was given, and asymptotic solutions for the initial and ultimate forms of the instability 
were calculated. At an O(1) distance from the point where the vortices start to grow, a 
numerical calculation was performed in order to find the upper and lower bounds for the 
region of disturbance activity. The mean flow was found to be so changed by the presence of 
the vortex that it bears no relationship to the unperturbed state; indeed, the vortex was 
shown to drive the mean flow. 

We shall use the approach of H~ill [9] to show how the right-hand branch of the neutral 
curve may be generated for wall-jet flow. We show how our results compare with those of 
Floryan [8] who used a normal mode approach. It is found that the third term in the 
asymptotic expansion of the neutral curve depends on the position in the flow where the 
requirement for neutral stability is applied. We develop the non-linear stability theory for 
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G6rtler vortices along the lines of Hall and Lakin [15], and show how the instability initially 
develops from its position of neutral stability. It is found that there is an interesting 
asymptotic structure in which the G6rtler number can be scaled out of the problem, and that 
this leads to a different structure for the flow after the onset of vortices from that which 
pertains in the Blasius boundary-layer situation. 

The remainder of this paper is set out as follows: in §2, we give the formulation of the 
problem; in §3 we consider the solution of the linearised disturbance equations for 
asymptotically high wavenumber solutions, after the method of Hall [9], and in §4 the 
non-linear problem is treated, in the manner of Hall and Lakin [15]. Some final remarks on 
the problem are given in §5. 

§2. Formulation of the problem 

We consider an incompressible steady fluid flow of kinematic viscosity v and density p over a 
section of a curved wall having a curvature R 1K(x*/l). We take l to be a typical length 
measured along the wall and U 0 be a typical downstream velocity, x* is measured along the 
wall, y* perpendicular to the wall, and z* so that (x*, y*, z*) form an orthogonal triad, 
where * denotes a dimensional quantity. The corresponding velocity components are 
(u*, v*, w*). We define the Reynolds number R e =  Uol/u, and a curvature parameter 
6 = l /R.  We shall confine our attention to the double limit Re-+ 2, 6--~ 0, with the G6rtler 
number G = 2 Rel/26 held fixed at O(1). We non-dimensionalise via 

(x, y, z) = l l(x*, y* Re 1/2 z* Re 1/2) 

(U*, V*, W*) = Uo(u , Re-l/2v, Re-I /2w)  . 

Here, we are expecting the spanwise dependence of the flow to occur on the boundary-layer 
length-scale. The Navier-Stokes equations for the flow may then be written in the form 
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(2.1a-d) 

where terms of relative order Re ~/2 have been neglected, and the pressure has been scaled 
on p U o Re ~. In the absence of any G6rtler vortices, we can write (u, v, w) = (t~, if, 0) where 
t1 and t7 are the velocity components of the wall jet velocity field given by Glauert [1] as 

/ ~ =  I 1 / 2 . , ' t /  .'- x 
~x : r e ) ,  

a :  ¼X-3/4(3~f ' (~)--  f ( ~ ) ) ,  
(2.2) 
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again, correct to O(Re-1/2). Here ~=  lyx-3/4 and f satisfies the ordinary differential 
equation 

f"' + f f" + 2f '2 = 0,  (2.3a) 

subject to the boundary conditions 

f(0) = f ' (0)  = 0,  f ' (~)  = 0. (2.3b) 

We now perturb the basic velocity and pressure fields to obtain 

(u*, v*, w*) = U0(/i + U, Re-1/z(t7 + V), Re 1/2W), 

p , _  pU2o 
Re (~ + f )  

When the altered flow-field expressions are substituted into the equations of motion, the 
resulting equations linearised and the mean flow equations subtracted from them, we have 

ux + v , +  w z : o ,  

Uyy + Uz: - V6y = aU x + a~U + gUy, (2.4a-d) 

v, ,  + E z  - K C a U  Py = aVx + U~x + ~vy + v~, 

W,,~ + wz~ - Pz : aw~ + ~w~ . 

These equations will be used as the starting point for our linear asymptotic calculations at 
high wavenumber, whereas the non-linear theory will be based on equations (2.1). 

§3. Linear theory 

Here, we show how the neutral curve in the high wavenumber rdgime may be determined. 
Following the method of Hall [9], suppose now that U, V, W and P are each taken to be 
proportional to exp(iz/e), where e-l, the non-dimensional wavenumber of the disturbance, 
is large. Then, O/Oz ~ 1/e and so the x- and y-momentum equations yield the balances 
U = o(eZv)  and V =  o ( e z G U )  respectively. For consistency, we must have G = O(e-4). 
Hall showed how small-wavelength G6rtler vortices position themselves in a layer of 
thickness e 1/2 centred where arty is a maximum. For wall-jet flow this maximum is at 

= ~: + = 1.1 for the concave wall. In addition, unlike in the case of the Blasius boundary 
layer, the wall jet is also unstable where [tT~yl is a maximum on the convex wall. This occurs 
for ~: = ~:+= 2.9. Thus, OlOy ~ e -1/2 and we obtain the scalings for W and P from the 
continuity and z-momentum equations respectively as W= O(e~/2V) and P =  O(e-1/2V). 
We define the variable r /by 

and so equations (2.4) must be rewritten with OlOy replaced by IX-3/4E-1/20/OT], and Olax 
by 
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a 3 ~x_le I/2 0 
Ox 4 017 " 

The disturbance is on a length scale of O(e) in the z-direction. The y-momentum equation 
suggests that the growth of any G6rtler vortex will be on a length scale such that 
02/OzZ~O/OX~ e -2. We therefore assume that U, V, W, and P are each proportional to E, 
where 

( lfX ) iz + ~ (/3o(~b) -}- El/2/31(4) ) q-'" ") d4~ , (3.1) E = exp e ~- 

and the growth rate /30 + E1/2/31-[-''" is to be calculated. On the basis of the above 
discussion, we expand our disturbance quantities as 

U = e2(Uo + e'/2U1 + eU  2 + . . . ) E  + C.C. , 

V = ( V  0 --[- e l / 2 V l  --[-- EV e -I- . .  " )E  -]- C . C .  , 

W = E l / 2 ( W o  -l- E l / 2 w  1 ~- E W  2 -}- ' '  " )E  Jr e . G .  , 

P = e 1/2(P 0 + e~/2P~ + e P  2 + " . . ) E  + C.C. ,  

(3.2) 

where 'C.C. '  denotes 'complex conjugate',  and replace G by the expansion 

G = e 4 ( g  0 + el/2g 1 + eg 2 + " ") . 

1 -3 /4  We take U evaluated at so1 = 74yix1 to be a representative disturbance quantity and 
consider its relative change as the flow moves downstream: 

~=~1 /31 /32 1 ( 3 (  + OUo ) 
_ _ + O ( e ° ) .  1 oU / 3 o + _ _ ~ + _ _ + ~ 7 ~  /33 -4x o17 ~=< 

U Ox e e s e 

For zero growth at x(, Yl, we require U -10U/Ox = O, SO that to O(e ~/2) we choose 

3~ :+ auo i (3.3) 
/30 =/3i =/32 = 0 and /33 --  4x 017 Uo e=< 

We also need expansions for the mean flow quantities ff and 6 defined by the Taylor 
expansions about (x +, y+) as 

/ ~  1 -1 /2 , '  + 2 + 
ax tu0 + 17e~/2u~ +17 eu 2 + " ' )  

~ =  1 - 3 / 4 ,  + 1/207 2 + aX IV 0 +17e +17 eV 2 + ' ' ' ) ,  

and 

(3.4) 

with 

~=~+ + 1 Ok(3~f  - f ') ~=~+ + _  1 Ok( i f )  and V k - k !  
u~ k! 0~ :k 0~: k 

We substitute the expansions (3.2) and (3.4) into the governing equations, (2.4), and equate 
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coefficients of like powers of e. Consistency of the leading-order terms in the momentum 
equations (2.4b, c) requires 

64x TM 
K g  o -  + + , (3.5a) 

U o U 1 

whilst the following expressions for Uo, W0, and Po are found from equations (2 .4a-d)  in 
terms of V o which is determined at higher order: 

1 - 5 / 4  +- .7  
U o = - ~ x  u 1 v 0 , 

i _ 3 / 4 V  ' (3 .5b-d)  Wo=- %, 

= I - 3 / 4 V ,  . Po ~x o, 

Consistency of the next order terms in (2.4b, c) requires 

+ + + + 
glUo u I + r/go(U~ -2 + 2u o u 2 ) = 0.  (3.6a) 

However ,  since s ¢+ was chosen such that at~y is a local maximum, it is easily shown that the 
coefficient of r/g o is identically zero, and hence gl = 0. From equations (2 .4a-d) ,  the 
eigenfunctions in terms of V1 are then 

+ 
U 1 = - -  ? 6 X - 5 / 4 ( u ; V 1  -~- 2 ~ / U  2 V o ) ,  

i _3/4V (3 .6b-d)  

P1 = ¼x-3 /4Vl  , 

with V 1 determined at higher order.  
At the third order  we shall determine the form of the zeroth-order disturbance, V o. The x- 

and y-momentum equations yield at O ( E e )  and O ( E e - ~ ) :  

1 3 / 2 T .  + 
I~X UOn n --  U 2 - l x - 5 / 4 ( u ; V 2  -[- 2 T / u  2 V 1 + 37/2u;V0) = 0,  

(3.7a, b) 
1 - 3 / 2 V ,  1 .  - 3 / 4 n  1 - 1 / 2 i t . , -  + r r  + + 2 + 
~ x  % - V 2 - ~x r0,  - ~x (r,,gzU o u o + Kgo(U o U 2 + T~u 1 U 1 .-~ T~ u 2 U o )  ) = O. 

Eliminating U 2 and V 2 simultaneously from these equations gives a solvability condition on 
the first-order eigenfunctions: 

I - 3 / 2 . .  1.-3/4p lx- i  2 + 1 - 1 / 2 r .  + 
16x v%, - ~x % + - /2Kgo(~lu~ U1 + n u2 Uo) - ~x r,.g2u 0 U 0 

1 2 r r  r~ + 1 - - 7 / 4  + + + 
+ ~ x  Uo,)r,,goU o - ~ x  Kgou o (3Vou 3 r/r/+ 2 V l u  2 r/) = O. (3.8) 

Using the expressions for P0, Uo, V0, and K g  o from (3.5), we find that (3.8) becomes 

3 _3/2V ' ,, 2 , , { u :  u_~_~ 1 . . . .  -7/4 + + 
1---6 x %, + ~7 %~,-U~ o + u ~ /  + 64 v°r~gzx u° ul = O. (3.9) 
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We make the transformation 0 = ~/x3"s(64A) 1'4 in (3.9) to obtain the familiar parabolic 
cylinder equation 

02V0 02V0 
002 4 aV 0 = 0 ,  (3.]0) 

where 

+ + 

Kg2u o u I 

a - 96A1/2 x 

For the disturbance to be confined to the boundary layer, we need a = - ( m  + ½) where m is 
a non-negative integer. The 'most dangerous'  mode, i.e. the one for which g2,, is minimised, 
producing the lowest neutral curve, occurs for rn = 0. We therefore have 

48A l/Zx 
K g 2 o -  + + (3.11) 

b/O / g l  

The general solution to (3.10) is V o = B 1U(a, O) + B2V(a, 0), where BI and B 2 are arbitrary 
constants and U and V are the standard Parabolic Cylinder functions. In order  to obtain the 

correct behaviour,  i.e. V0m---~ 0, as 0---~--+m, we choose B 2 = 0. We now write V 0 in terms of 
the Hermite  polynomial of order m, He m. Using the relationships given in Abramowitz and 
Stegun [16], we have, except for a normalisation constant, 

The higher modes correspond to an increase in the number of vortices present. 
At  the fourth order,  the first non-zero downstream-growth-rate term, /33, is found to 

introduce non-parallel effects into the G6rtler problem. By equating the coefficients of 
O(EE 3/2) and O(EE -1/2) to zero in the x- and y-momentum equations, eliminating U 3 and V 3 
simultaneously, and replacing lower-order quantities by the expressions in terms of V 0 and 
V% via (3.5) and (3.6), we find that 

- -  * z  Tp - - 7 / 4  + + 3 3/2V + 3r/2V~ + + Vlt~g2x uo ul 
16 x i n "  \ b / 0  U l  

_ U 0 X 3 / 2  + + + + 

Vo /33 - ( 3 u , ,  - ) -  / 

+ + + 2  + + V(  0 4 ,  3 u 4  + 2  77 x-7 /4  
-- --7 + (2U3 Ul ~- U 2 ) q'- ~ (b/I Kg2 + 2u2 u0 ) • (3.13) 

U 1 U o U I 

The left-hand side of this equation has the same form as that of (3.9), and so we make the 
same transformation as in the third-order problem. Thus we have, 
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2 X 3 / 4 ( X -  ( +.z -5/4\ 
02Vlo02 02V14 aV1 - 3A i-~ ~/2u° /33 I'll l£-g3x32 ] + VoFI(O ) + - ~  (3.14) 

Here,  FI(O ) is an odd function of 0 and F 2 is even in 0. Now, Hem(0 ) is odd if m is even 
and even if m is odd, so VoF 1 + OVo/O0 F 2 is odd for all m. If we multiply (3.14) by 
exp(-02/4)  Hem(0 ) and integrate over the range ( - %  ~), we have, after simplification, 

x u o UlKg3x ~ Vo(O ) dO+ V o VoF l + - ~  F 2 dO=O 
2 /33 32 / -~ ~ " 

The first of these integrals is positive definite. The second integral, being that of an odd 
function over an interval which is symmetrical about the origin, is identically zero. Thus, to 
satisfy the equation, we require 

u? I%x -5,4 
/33 -- 32 (3.15) 

Using the relation (3.3) for/33 , we find that we must have 

24 +xl/4 0U° (3.16) 
Kg3- u? 0 On 

That is, g3 = g3(xl, Yl) and so we see that g3 is the first term in the expansion of G to depend 
on the position in the flow where we apply our stability criterion. Noting from (3.5b) that 

1 dUo_ 1 0 V o _ V o  o 

Uo on ro on r0' 

and since H e 0 ( 0 ) = l ,  we have VoolVo = -012. The resulting expression for the third 
non-zero term in the neutral-G6rtler-number expansion is then 

12~+~1 x5/8 
Kg 3 - u1(64A)1/4 , (3.17) 

where ~71 is the value of rt at (xl, Yl). By noting that the g basic velocity is given by 
t~ = 1x-1/2f '(~) and that the 'real length' is xl, we are able to find the local Grrt ler  number 
and wavenumber, 

G L = l x S / 4 G K - 1  and e L = x - 3 / 4 e .  (3.18) 

The form of the neutral G6rtler number in terms of local variables for the most dangerous 
mode is then 

-4[ 32 24A I/2 6£ +~11 
G L = e L ~u;u'--~l + E L Uo+Ul+ + e 3/2 u?(64A)l /4 + O(e~)] . (3.19) 

On substituting the numerical values of the constants (which are given in Wadey [17]) into 
(3.19), we find that the equations of the neutral curves for the G6rtler instability in wall jet 
flows on concave and convex walls are 
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G L = eZ4(811.59 + 410.09et. + 16.55e~zr/l + O(e~)) and 
(3.20) 

3/2 O(E.2 )) G L = -e~4(1078.74 + 490.02e1~ + 67.85~t. rll + 

respectively, where the minus sign indicates the negative curvature associated with a convex 
wall. At a given wavenumber, a higher G6rtler number is needed to create conditions 
suitable for the growth of the instability on the convex wall than on the concave wall. This is 
consistent with the conclusions of Floryan [8] in the high wavenumber regime. Furthermore, 
depending on the value of r/l, the non-parallelism may be exhibited at O(e~) when r h = 0 or 
O(e~/2) if ~ is O(1). The procedure becomes formally invalid if 7i becomes O(eZI/2). As it 
is impossible to determine exactly the value of ~ in experimental conditions, direct 
comparison of experimental and theoretical results is rendered impossible. It is this variation 
in 7 h which demonstrates why so-called 'parallel flow' theories are inadequate, and why there 
has been a large spread in experimental results for the Blasius boundary layer. The reader is 
referred to Hall [9] for details of these. The author is unaware of any experimental results 
for the laminar wall jet. 

In Fig. 1 we show how the parallel flow results of Floryan [8] compare with our results. 
Here, G F and e F are the G6rtler number and wavenumber defined by Floryan; in terms of 
our quantities, they are given by G~ = 0 ~ . 3 1 5 G N / 2  and e F = ~ e .  The curves shown 
here refer to flow over a concave wall. Although Floryan's method might be expected to 
produce the correct neutral curve in the high wavenumber limit, in fact it appears as though 
only the slope of the neutral curve has been predicted correctly. In Fig. 2, we demonstrate 
how the variation of ~l changes the neutral curve in the concave wall case. Similar results, 
shifted to the left slightly, are obtained for the convex wall. It should be remembered that 
these results are only formally valid in the high wavenumber regime. Despite this restriction, 
it may be seen that any attempt at a solution which does not allow for such variation cannot 
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Fig. 1. Comparison of results with Floryan's [8] for the concave wall. Solid line: Floryan. Broken line: present 
results. 
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be mathematically justified, and a numerical solution such as that performed by Hall [14] is 
necessary to determine regions of instability at O(1) wavenumbers. 

§4. Non-linear theory 

For the non-linear theory, we return to equations (2.1). It is helpful first to describe the 
manner in which Hall and Lakin [15], hereinafter referred to as HL, divided the flow into 
various regions downstream of its neutral stability position. In regions I and III shown in Fig. 
3, there is no disturbance to the flow which would be there in the absence of a vortex. 
Region II, bounded above and below at Eu and EL respectively, contains the vortices. HL 
showed how there exists a pair of thin shear layers of thickness 0(6  2/3) located at Ev and EL 

III 
~u 

E, 
O" 1/5', 

t g o  ) 

go 

Fig. 3. The various regimes downstream of the position of neutral stability. 
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where the vortex activity is brought to zero, but that in these layers, the leading-order terms 
for the mean-flow quantities remains constant. Thus, for our purposes, we can replace these 
layers by simply requiring continuity of mean-flow variables at ~v and ~:L. 

In using the procedure developed by HL in perturbing the mean flow, the scalings are 
chosen such that the disturbance quantities interact with the mean flow at leading order. The 
same balances between terms are taken as in the linear theory, namely, between convection 
and diffusion terms in the x-momentum equation giving Vffy ~ U~ ,  and between diffusion 
and the centrifugal term in the y-momentum equation giving K G ~ U ~  V~.  The pressure 
gradient, Pz balances with diffusion, W~ in the z-momentum equation, and from continuity 
we have Vv ~ W~. For the non-linear theory, however, we have to take y variation to be on 
an O(1) lengthscale. We shall now use the notation where u, v, and/~ are the parts of the 
flow independent of z and our expansions for the velocity components and pressure are: 

u = ~ + (eU~E + . . .  + C.C.) ,  

v = t7 + (e-1V~,E + - . .  + C.C.) ,  

w = W~E + . . .  + C .C. ,  

p = s"fi + ( s -~PoE + . . .  + C.C.) ,  

(4.1) 

where n will be determined at leading order, and E was defined by (3.1). We now substitute 
the expansions into the equations of motion, (2.1). In the continuity equation, we take the 
terms of O ( e - l E ) ,  giving 

Vov + i W  o = 0.  (4.2) 

In the streamwise equation, (2.1b), we take the terms independent of E and e, and terms of 
O( E e -  l ), giving 

~l~ x + U U y -  ffyy = - V o [ ] O y -  ~)Uo~ - i(lg'oU 0 - W0/.~0), (4.3) 

and 

- U 0 = V o g  v . ( 4 . 4 )  

In the above, a tilde over a disturbance quantity denotes its complex conjugate. The 
y-momentum equation yields 

V o = - KgoffUo, (4.5) 

for terms of O ( E e - 3 ) ,  and the mean pressure is balanced by choosing n = - 4  in the 
expansions, so that/~y = goKff2/2. Re-writing (4.3) by replacing W 0 and U 0 with terms in V 0 
via (4.2) and (4.4) yields 

19 _ 2 
a ~  x q- OUy -- ~yy = 2 ~yy (uylVol) ,  ( 4 . 6 )  

as found in HL, and consistency of (4.3) and (4.4) requires that 
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1 (4.7) 
UUy K g  

This integrates to give 

= ql/2 , (4.8) 

where we introduced for notational convenience the quantity q = (2y + h ( x ) ) / k g  o, with h(x )  

an arbitrary function of x. The continuity equation provides an expression for 6, viz. 

6 =  l q3/ZK'  g o - ½h' q 1/2 + l (x)  , (4.9) 

and the integration of (4.6) yields 

m ( x )  - 2t~ylVo[ 2 = q - 1 / 2 / K g  o + l~K '  goq 2 - l ( x ) q  ~/2 , (4.10a) 

with re (x )  and l (x)  arbitrary functions of integration, and a dash indicates a derivative with 
respect to x. At  the boundaries of the core, y = 71 and y = Y2, IV012 = 0. Eliminating re (x )  

from equation (4.10a) evaluated at Yl and 72 yields the condition 

[ q - 1 / Z / K g  o + ~ K '  goq 2 - l ( x )q l / 2 ]  72 = 0 
Yl (4.10b) 

In regions I and III, the flow is independent of z and the flow quantities u and v are given by 
the solution to the boundaryqayer equations, 

UU x + UUy ~ Uyy 

u x + Vy = 0.  (4.11a, b) 

These must be solved in [0, yl] and [Y2, oo] subject to the boundary conditions 

u = v = 0  a t y = 0 ,  

u(x ,  y )  = ql /2 at y = Yl, Y2 , 

u(x ,  y )  = ~ q 3 / 2 K ' g  0 - ½h'q  1/2 + l (x)  

and u, u---~0 as y-->oo, 

at y = Yl, Y2 
(4.11c) 

together with condition (4.10b). 
This system of equations constitutes a flee-boundary problem for the core boundary 

positions, Yl and Y2, and the unknown functions of integration, h(x )  and l (x) .  It is doubtful 
that any analytic solution could be found and it would therefore be necessary to compute the 
solution to this partial-differential system. We are able to make some progress with the 
special case where the curvature is such that a similarity solution may be used, as HL did for 
the Blasius boundary layer. The similarity solution case is unlikely to occur in engineering 
situations, but the method of solution is the first step in understanding how to compute the 
solution to the full problem. 

We now seek special forms of h(x), l(x), and re (x )  such that (4.7) and (4.10) allow the 
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similarity type of solution for the wall jet. Comparing (4.8) with the wall-jet ~ velocity 
expression (2.2) suggests that we should take h(x)= Hx -3/4, and consider the particular 
geometry K = x 7/4. The form of expression (2.2) for t~ is maintained in region II if we take 

(8~ + H) I/2 
f ' (~:)  = 4\ ~ . (4.12a) 

On comparing the expressions for 6 in I and II we find that l(x)= Lx -3/4 to enable the 
similarity solution to exist. We have 

_3/4(7gof '3 3Hf'  ) 
t7 = x \ 1 - ~  32 + L . (4.12b) 

Finally, in (4.10) we replace m(x) by MY -3/4 and rearrange to obtain 

21Vol 2 + 1 = L(8~ + H)  - 7(8ff + H)S/z/48glo/2 + M g l o / 2 ( 8 ~  n t- 9 )  1/2 . (4.13) 

We note that this equation only gives the magnitude of V 0. The phase may be found by 
writing V 0 = IV01 exp i~b in the O(Ee -1) terms of equation (2.1d), which then reduces to 

~yylV0l ÷ 2 ylv01y = 0 .  

So, once IV0] has been found from equation (4.13), the phase may be calculated. 
We have now removed x from the problem. To solve for the disturbance velocity field, we 

simply start at the wall with riO) = f ' (0 )  = 0, f"(0) = C, a constant to be determined, and 
integrate (2.2) forwards until 

f ' f "  = 64 ~go. (4.15) 

This is the boundary between I and II, as shown in Fig. 3. In region II, equation (4.14) 
controls the flow, with IVol 2 = 0 at the boundaries. We match f, f '  and f "  at ~c to find the 
constants H, L and M. We solve [Vol 2 = 0 in (4.14) to find the boundary at ~u and calculate f,  
f '  and f "  there. The mean flow equation (2.2) resumes control and is integrated to infinity. 
The boundary condition there requires f '  = 0. We use a shooting method on C to correctly 
obtain this condition. 

From the form of the numerical solution for large go, it was found that for go >> go, an 
asymptotic solution was readily available. If, in equations (4.12), (4.13), and (2.3a) we make 
the substitutions ~ = golJS~ :, F(~)  = g~o/Sf(~), H = blg~o/5, L = Lgo 1is and M = h4go 3/~, the 
resulting system of equations contains no reference to the G6rtler number at all. This is only 
possible because the boundary conditions for wall-jet flow, (2.3b), also enable the G6rtler 
parameter to be scaled out. This is not the case for the Blasius boundary layer, where the 
condition f ' ( ~ ) - - 1  prevents this scaling. Further numerical work showed that whichever 
value of go was used, the same scaled solution resulted, even for go < go,. The solution must 
therefore be considered in the following manner. The critical value of go is taken from the 
linear theory for high wavenumbers. For immediately higher values of go, we may use 
weakly non-linear theory to construct the curves ~:L and ~:u between which the vortex activity 
is constrained. These curves merge into the full non-linear computed solution at some value 
of go > go, after which the scaled solution is valid. 
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Fig. 4. The vortex boundaries given by weakly nonlinear and fully nonlinear theories, close to the neutral point 
Solid line: computed solution. Dotted line: weakly nonlinear asymptotic solution. 

The core boundaries close to the critical point (xc, Yc) where the vortex is starting may be 
found by using the weakly non-linear theory developed by HL. For the sake of brevity, we 
only state the result here; the full working for the wall-jet case may be found in Wadey [17]. 
For the particular case where the curvature function is K = x 7~4, the neutral point is x N = 1.0 

and the local G6rtler number and wavenumber are G L = 6.34 and eZ 1 = 4.0 respectively, the 
general equation of the edges of the initial downstream vortex structure becomes 

Yu.L = 4 " 3 9 5 x 3 / 4  +- 3.45(x - 1 .0)  1/2 . 

The values of the parameters chosen here correspond to a flow condition which is neutrally 
stable according to linear theory. This is shown in Fig. 4 together with the computed 
solution. 

§5. Final remarks 

The aim of this study has been to present some results on G6rtler vortices in wall-jet flow, 
using the asymptotic theory developed by Hall [9, 13] and Hall and Lakin [15] for the Blasius 
boundary layer. The leading term in the expansion of the local G6rtler number at high 
wavenumber is much higher for the wall jet on walls of either curvature than it is for the 
Blasius boundary layer, indicating that other things being equal, the G6rtler instability 
becomes of practical importance in wall-jet flow only at much higher flow speeds or on more 
rapidly curved surfaces compared with the Blasius layer. In Figs 5 and 6 we show the velocity 
fields for G6rtler numbers 1700 and 2700, together with the velocity profile in the absence of 
a vortex. In Fig. 5 we show how the effect of increasing the G6rtler number beyond its 
critical value is to reduce the maximum downstream velocity and to move the position where 

attains its maximum away from the wall. The presence of vortices has the same effect on 
the normal-to-wall velocity, 6. Figure 6 shows the size and position of the vortex activity for 
the two values of g = G L E 4 given above. The increase of 59% in the value of g in the two 
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Fig. 5. The zi velocity field. Solid line: velocity profile in absence of vortices. Dot ted line: velocity profile for 
g = 1700. Broken line: velocity profile for g = 2700. 

calculations whose results are presented in the figures only produces a 12% increase in {V0] 2, 
although the proportion of the disturbance size increases by 50% from 0.04 to 0.06. It is 
interesting to note that the curve for g = 1700 does not lie within that for g = 2700 in Fig. 6, 
unlike the corresponding case in HL. This is a result of the different structure to the problem 
from that case. In HL, the upper and lower boundaries of the vortex activity, EL and s%, 
varied a s  go 3 and go respectively for large go, whereas in the wall-jet case, both boundaries 

1/5 
vary as go 

The removal of go from the nonlinear problem considered in §4 is not restricted to the 
similarity situation. The G6rtler number may also be scaled out of the general system of 

Fig. 6. Variation 
g = 1700. Broken 
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in size and position of the amplitude of the disturbance, IVo] 2. Dotted line: velocity profile for 
line: velocity profile for g = 2700. 
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equations, (4.12). The boundary-layer equations, (4.12a, b), may be made independent of go 
via the transformation u = ~go2/Sx-a/2F'(~*), where ~ t =  ¼ygol/Sx 3/4 =gol/5~. The ex- 
pression for v is then found from the continuity equation as 

6 = 1go'/Sx-3/4(3~tF'- F), 

while the differential equation satisfied by F is found to take the same form as in (2.3a), with 
the same boundary conditions. The other boundary conditions in (4.11) have go removed by 
use of the substitutions h(x) = g~/Sh*(x), l(x) = gol/Sl*(x), and m(x) = go3/Sm*(x). We then 
have 

u*(x, y , ) =  (2y* +K h*) 1/2 

and 

( h t \  3/2 (2y*+__ ) it , 1 2y* + ) K' 1 dh* h* i/2 
v ( x , y * ) = g  K 2 dx \ K + ' 

1 / 5 ~ t  where u = go2/Su *, and v = gol/Sv t. We observe that since ~ = go ¢ ,  the effect of increasing 
the G6rtler number is to force the layer of activity away from the wall, and eventually into 
the free stream. Equation (4.10a) shows that when go is scaled out of the problem, Iv012 
remains O(g°), =O(1).  Thus, at large go, the mean flow U=go2/Sut is an order of 
magnitude smaller than the disturbance it creates. The conclusions of HL for the Blasius 
boundary layer remain unaltered for wall-jet flow although the structure of the flow after the 
onset of G6rtler vortex growth is quite different. Of course, our inability to find solutions to 
the system of equations and boundary conditions, (4.11), other than that which is presented 
here does not mean that no such solutions exist. However, extensive numerical checking 
failed to produce any other solutions. 

It is well known that in the Blasius case, vortices conserve their wavenumber as they 
progress downstream. Thus, by virtue of (3.18a), we note that if the same is true of G6rtler 
vortices in wall jet flow, then the high wavenumber regime will utlimately be relevant to 
flows which occur in practice. 
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